Deux Nouvelles Structures Difluorine et Trifluorine

RÉGNAULT VON DER MÜHLL, DENIS DUMORA, JEAN RAVEZ, ET PAUL HAGENMULLER

Service de Chimie Minérale Structurale de la Faculté des Sciences de Bordeaux associé au C.N.R.S., 351, cours de la Libération, 33-Talence, France

Received January 15, 1970

The structures of the tetragonal $SrCrF_4$ and Sr_2CuF_6 phases have been determined. The ordering of the cations imposes doubling and tripling of the unit cell. These cations occupy ideal positions; whereas the anionic sublattice is distorted. $CaCrF_4$, $CaCuF_4$, and $SrCuF_4$ have the same structure as $SrCrF_4$.

Les structures des phases $SrCrF_4$ et Sr_2CuF_6 ont été déterminées. L'existence d'un ordre cationique entraîne doublement et triplement de l'un des paramètres. Les cations occupent les positions idéales au sein des mailles élémentaires, mais le sous-réseau anionique est fortement distordu. CaCrF₄, CaCuF₄, et SrCuF₄ ont même structure que SrCrF₄.

Au cours des dernières années l'étude des systèmes MF_2-TF_2 dans lesquels M est un élément alcalinoterreux et T un élément de transition, a permis de mettre en évidence un certain nombre de phases de formules MTF_4 et M_2TF_6 (Tableau I).

Les phases de formules SrNiF_4 et $\operatorname{BaTF}_4(T = Mn,$ Fe, Co, Ni, Cu, Zn) sont orthorhombiques et isotypes; leur structure a été déterminée par H. G. Schnering (9): la maille cristalline est constituée de couches ondulées d'octaèdres TF_6^{-} dont les ions baryum assurent la cohésion. CaZnF₄ et SrZnF₄ comportent une structure de type scheelite. La maille de BaCrF₄ présente une grande analogie avec celle de BaFeF₅ (10, 11); elle est en cours d'étude au laboratoire. Les structures des composés de formule Ba₂TF₆(T = Cr, Fe, Co, Ni, Cu, Zn) ont été précisées par Schnering (12): elles résultent d'une alternance de plans TF₄²⁻, de plans alcalino-terreux et de plans fluor.

Seules les quatre phases CaCrF₄, SrCrF₄,

	T ²⁺							
M ²⁺	Cr ²⁺	Mn ²⁺	Fe ²⁺	Co ²⁺	Ni ²⁺	Cu ²⁺	Zn ²⁺	
Ca ²⁺	CaCrF₄ (1)	*	*	*	*	CaCuF ₄ (6)	CaZnF (8)	
Sr ²⁺	SrCrF₄				SrNiF₄	SrCuF₄ Sr₂CuF₄	SrZnF₄	
	(1)	*	*	*	(5)	(6)	(8)	
Ba ²⁺	$BaCrF_4$ Ba_2CrF_6	BaMnF₄	BaFeF₄ Ba₂FeF6	BaCoF₄ Ba₂CoF ₆	BaNiF₄ Ba₂NiF6	BaCuF₄ Ba₂CuF ₆	BaZnF₄ Ba₂ZnF	
	(1)	(2)	(3)	(4, 5)	(2, 5)	(5, 7)	(5, 9)	

TABLEAU I

* Aucun composé ternaire n'a été mis en évidence dans ces systèmes.

SrF2 Cubique	SrCuF₄ Quadratique	Sr₂CuF6 Quadratique
$a_0 = 5.799 \text{ Å}$	$a_1 = 5.642$ Å	$a_2 = 5.710$ Å
	$c_1 = 10.668 \text{ Å}$	$c_2 = 16.458$ Å

TABLEAU II

CaCuF₄, SrCuF₄ qui sont isotypes et Sr_2CuF_6 possèdent des structures totalement inédites; il nous a semblé intéressant de les déterminer en vue d'établir une classification structurale complète des composés signalés au Tableau I.

I. Remarques et Hypothèses Préliminaires

Le Tableau II permet de comparer les spectres Debye-Scherrer et les paramètres du réseau cristallin de SrF_2 , $SrCuF_4$ et Sr_2CuF_6 : ils possèdent une incontestable analogie (Fig. 1).

Le passage de la maille élémentaire de SrF_2 à celles de $SrCuF_4$ et de Sr_2CuF_6 s'effectue au moyen des transformations:

et

$$a_2 = b_2 \approx a_0; c_2 \approx 3a_0$$

 $a_1 = b_1 \approx a_0; c_1 \approx 2a_0$

correspondant sensiblement à un doublement et à un triplement de la maille de SrF_2 .

Dans une récente Note relative aux systèmes MF_2 -Cu F_2 (M = Ca, Sr) nous avions proposé l'hypothèse structurale suivante: la structure dériverait de celle de la fluorine observée pour Sr F_2 , la distorsion quadratique correspondant à un ordre

cationique au sein d'un réseau pseudo-cubique à faces centrées, dans lequel les atomes de fluor occuperaient les sites tétraédriques. L'empilement des cations serait du type ABAB dans $SrCuF_4$, du type ABBABB dans Sr_2CuF_6 (A = Cu, B = Sr) (1). On pourrait étendre cette hypothèse au cas du chrome +II, qui présente une grande analogie avec le cuivre +II.

II. Choix du Composé, Préparation et Caractérisation d'un Monocristal, Détermination de la Structure

A. Cas des Phases MTF_4 (M = Ca, Sr), (T = Cr, Cu)

1. Choix de la Phase étudiée. Notre étude a porté sur $SrCrF_4$ pour deux raisons: d'une part espérant utiliser la méthode de l'atome lourd nous avons préféré comme élément alcalino-terreux le strontium au calcium, d'autre part Sr^{2+} et Cr^{2+} sont les cations dont l'écart entre numéros atomiques, donc entre facteurs de diffusion, est le plus important, propriété qui rend leur différenciation plus aisée.

2. Obtention d'un Monocristal. SrCrF₄ est préparé par action de SrF₂ sur CrF₂ pendant 15 heures à 700°C; il fond de manière congruente à 875 ± 15 °C. Des monocristaux ont été obtenus par refroidissement lent de la phase fondue: SrCrF₄ cristallise en plaquettes bleues clivables perpendiculairement à l'axe A4; les dimensions du monocristal utilisé sont de 0.26, 0.06 et 0.02 mm.

3. Caractérisation. Les données cristallographiques sont reportées dans le Tableau III, elles permettent d'indexer parfaitement le spectre de poudre (Tableau IV).

4. Détermination de la Structure. Les intensités des diverses taches de diffraction ont été collectées en utilisant la technique des "films multiples," à l'aide

FIG. 1. Diagrammes Debye-Scherrer de SrF_2 , $SrCuF_4$ et Sr_2CuF_6 .

TABLEAU III

С.	-	-T.	
- 51	ч I	r F	

Symétrie	Quadratique
Paramètres	$a = 5.673 \pm 0.003$ Å
i urumotros	$c = 10.920 \pm 0.006 \text{ Å}$
Groupe spatial	14cm, 14c2, ou 14/mcm
dern	4.11 ± 0.04
d _{calc}	4.074
Z	4

TABLEAU IV SrCrF₄

$d_{\rm obs}({\rm \AA})$	d _{cate} (Å)	hkl	I/I_0
5.47	5,460	002	5
4.01	4.011	110	2
3.235	3.233	112	100
2.837	2.836	020	17
2.732	2.730	004	3
2.518	2.517	022	4
2.471	2.471	121	12
2.257	2,257	114	5
2.081	2.081	123	6
2.006	2.006	220	38
1.967	1.967	024	48
1.794	1.794	130	5
1.704	1.704	132	30
1.657	1.657	116	13
1.616	1.616	224	6
1.418	1.418	040	5
1.365	1.365	008	6
1.298	1.299	332	10
1.277	1.277	136	8
1.268	1.268	240	8
1.258	1.258	044	10
1.230	1.230	028	2
1.201	1.201	334	4

d'une chambre de Weissenberg munie d'un dispositif d'intégration (rayonnement $CuK\alpha$). La mesure des intensités a été faite visuellement par comparaison avec une échelle photographique préalablement étalonnée. Seule une correction par le facteur de Lorentz-polarisation a été effectuée.

Les facteurs de diffusion utilisés pour le strontium, le chrome et le fluor sont ceux des tables internationales. Tous les calculs ont été réalisés sur I.B.M. 1130 à l'aide des programmes établis par M. Saux et J. Galy.

TABLEAU V

 Sr_2CuF_6

Quauranque
$a = 5.710 \pm 0.003$ Å
$c = 16.458 \pm 0.006$ Å
4.29 ± 0.04
4.366
4

Sr ₂ CuF ₆					
d _{obs} (Å)	d _{cale} (Å)	hkl	I/I ₀		
8.24	8.229	002	<1		
4.12	4.114	004	1		
3.93	3.921	111	<1		
3.258	3.252	113	100		
2.858	2.855	020	12		
2.744	2.743	006	2		
2 552	∫2.553 ≦	115	-		
2.355	2.551	120	2		
2.525	2.523	121	<1		
2.348	2.345	024	2		
2.032	2.032	117	2		
2.019	2.019	220	15		
1.978	1.978	026	36		
1.962	1.961	222	1		
1.796	1.795	131	2		
1.716	1.715	133	25		
1.665	1.666	119	12		
1.645	1.646	0010	1		
1.626	1.626	226	7		
1.427	1.427	040	3		
1.407	1.406	042	1		
1.371	1.371	0012	2		
1.307	1.307	333	7		
1.285	1.285	139	9		
1.277	1.277	240	4		
1.266	1.266	046	4		
1.236	1.236	0212	3		
1.219	1.219	244	1		

B. Cas de la Phase Sr_2CuF_6

 Sr_2CuF_6 est préparé par action de SrF_2 sur CuF_2 pendant 15 heures à 650°C. Cette phase fond de manière non congruente, nous n'avons pu en préparer de monocristaux.

Les données cristallographiques reportées au Tableau V permettent cependant d'indexer parfaitement le spectre de poudre (Tableau VI).

Une détermination structurale à partir du spectre de poudre ne pouvait être envisagée que grâce à l'analogie, illustrée par les hypothèses préliminaires, entre Sr_2CuF_6 , SrF_2 et $SrCuF_4$.

Les intensités des raies de diffraction ont été obtenues à partir d'un diffractogramme réalisé à l'aide d'un spectrogoniomètre Philips; un planimètre permet de les mesurer de manière précise. L'introduction d'un plastifiant évite toute orientation monocristalline préjudiciable à la précision de ces mesures.

Nous avons utilisé le programme d'affinement

TABLEAU VI

des positions atomiques à partir du spectre de poudre mis au point par G. Perez et M. Saux (13).

III. Structure de SrCrF₄

Les 90 réflexions 0kl, 1kl, 2kl, et 3kl observées sur les diagrammes de Weissenberg relatifs à l'axe a ont permis d'établir la fonction de Patterson tridimensionnelle à partir de laquelle ont été précisées les positions des atomes de strontium et de chrome (Tableau VII).

Le facteur de reliabilité calculé R = 0.33 justifie les coordonnées choisies pour les cations.

Appliquant ensuite la méthode de l'atome lourd nous avons localisé les atomes de fluor en x = 0.32, y = 0.32, et z = 0.12. Cette position générale nécessite un site à 16 équivalents: la maille cristalline possédant 16 atomes de fluor, nous avons pu éliminer le groupe spatial *I4/mcm* pour lequel 32 équivalents seraient nécessaires.

Une série de cycles d'affinement utilisant la méthode des moindres carrés a été entreprise pour trancher entre les deux groupes spatiaux restants: *I4cm* et *I*4c2. Alors que le facteur de reliabilité se stabilise à 0.23 pour *I4cm*, il s'abaisse à 0.084 pour *I*4c2. Cette valeur très faible confirme les coordonnées réduites des atomes et les facteurs d'agitation thermique isotrope donnés au Tableau VIII. Les valeurs des facteurs de structure observés et calculés sont rassemblés au Tableau IX.

La figure 2 réprésente les projections du réseau sur les plans xOy et xOz. Les cations occupent les

TABLEAU VIII

SrCrF ₄ ^a						
	x	у	Z	$B(Å^2)$		
Sr	0	$\frac{1}{2}$	1	0.67		
Cr	0	0	0	1.70		
F	0.3186	0.3186	0.1238	1.66		

^a Coordonnées réduites et facteurs d'agitation thermique.

FIG. 2. Projections de la structure de $SrCrF_4$ sur les plans xOy et xOz.

sites du calcium dans la fluorine; ils constituent des plans équidistants perpendiculaires à l'axe Oz, qui contiennent tantôt le strontium, tantôt le chrome. Le déplacement des atomes de fluor par rapport aux positions occupées dans CaF_2 entraîne des environnements différents suivant la nature du cation: le strontium est au centre d'un prisme droit de base carrée qui est très proche en fait d'un cube, le chrome occupe le centre d'un tétraèdre légèrement allongé dans la direction de l'axe Oz (Fig. 3). Sur cette figure sont reportées les valeurs des distances interatomiques et des angles de liaison.

La structure de $SrCrF_4$ rappelle celle de $KBrF_4$ par la répartition des cations, elle s'en écarte par la disposition des anions (14, 15).

IV. Structure de Sr₂CuF₆

La position des cations étant supposée identique à celle des atomes de calcium dans la fluorine, deux types d'empilements sont théoriquement possibles dans la direction de l'axe Oz: ABBABB ou ABBBAB(A = Cu, B = Sr). Un calcul de facteurs de structure

FIG. 3. Environnements fluorés des cations dans SrCrF₄.

SrCrF₄

hk l	Fo	F _c	hk l	Fo	Fc	hk l	Fo	F _c	
 00 2	4.8	5.8	1112	4.7	4.5	22 6	4.6	4.8	
00 4	8.5	9.0	12 1	7.6	6.3	22 8	14.1	15.2	
00 6	5.4	5.3	123	5.8	5.7	2210	3.9	4.0	
00 8	19.5	22.2	12 5	4.6	4.1	2212	9.2	8.0	
0010	4.4	4.0	127	3.6	3.3	23 1	1.5	1.1	
0012	8.8	7.2	129	2.7	2.0	24 0	13.9	15.2	
0014	3.4	3.8	1211	2.1	1.6	24 2	5.4	4.5	
020	14.2	14.0	130	8.5	8.8	24 4	12.1	12.8	
022	5.4	5.4	132	17.7	18.2	24 6	4.0	4.3	
024	26.1	26.9	136	13.0	14.8	24 8	11.0	10.9	
026	5.0	4.6	138	6.3	6.2	2410	4.2	3.8	
028	11.3	10.5	1310	12.0	10.5	25 1	2.4	1.2	
0210	4.7	4.5	1312	2.2	2.8	25 3	1.6	1.1	
0212	13.8	11.4	14 1	5.1	4.2	25 5	1.1	0.9	
04 0	15.0	14.9	14 3	4.3	3.9	257	1.8	0.8	
04 2	5.7	4.7	14 5	3.2	3.1	26 0	8.4	8.4	
04 4	15.4	15.4	14 7	2.2	2.7	26 2	3.7	4.0	
04 6	4.7	4.4	149	1.9	1.8	264	10.1	10.9	
04 8	10.3	10.7	1411	1.3	1.6	26 6	3.5	3.6	
0410	2.9	3.9	150	3.3	2.8	31 4	1.6	1.7	
06 0	13.1	13.6	152	12.9	12.7	33 0	2.4	1.3	
062	4.3	4.1	154	5.6	5.7	332	13.9	15.0	
06 4	7.8	7.5	156	11.0	10.8	33 4	9.3	9.5	
06 6	3.1	3.9	158	2.5	2.9	336	10.9	12.3	
11 0	3.9	2.8	170	2.4	3.8	3310	11.0	9.5	
11 2	23.7	24.4	172	8.5	8.5	350	7.4	7.1	
11 4	7.0	7.3	2113	1.5	1.0	352	10.7	10.9	
11 6	14.6	17.9	22 0	23.9	24.8	354	1.4	1.5	
11 8	3.7	3.5	22 2	5.6	4.9	356	9.3	9.6	
1110	13.3	12.3	22 4	12.6	14.0	358	6.1	5.5	

réalisé à l'aide des 39 raies du spectre de poudre a permis d'éliminer la seconde solution; la valeur du facteur de reliabilité calculé dans le premier cas

TABLEAU X

	x	у	Z
Sr ₁	0	$\frac{1}{2}$	±₽
Sr ₂	0	0	± 1
Sr ₃	$\frac{1}{2}$	$\frac{1}{2}$	$\pm \frac{1}{3}$
Cu ₁	0	0	0
Cu ₂	0	ł	1/2
Cu ₃	$\frac{1}{2}$	$\frac{1}{2}$	0

(R = 0.21) justifie l'hypothèse relative aux cations. Le Tableau X donne les positions correspondantes.

Aucune condition d'espace n'a été relevée, ce qui impose un groupe simple P. La proximité du réseau cristallin de Sr_2CuF_6 et de ceux de SrF_2 et $SrCrF_4$ a permis de retenir le groupe spatial $P\bar{4}b2$.

Des positions de départ identiques à celles observées pour $SrCrF_4$ ont donc été envisagées pour les anions (Tableau XI).

TABLEAU XI

	x	у	Z
F_1	0.30	0.30	$\frac{1}{12}$
F ₂	0.30	0.30	$\frac{3}{12}$
F3	0.30	0.30	$\frac{5}{12}$

Sr ₂ CuF ₆ ^{<i>a</i>}										
	x	у	Ζ	$B(\text{\AA}^2)$						
Sr ₁	0	$\frac{1}{2}$	0.162	0.86						
Sr ₂	0	0	0.337	0.86						
Cu1	0	0	0	0.86						
Cu₂	0	$\frac{1}{2}$	$\frac{1}{2}$	0.86						
F ₁	0.357	0.323	0.075	1.40						
F ₂	0.235	0.259	0.251	1.20						
F ₃	0.323	0.142	0.422	1.40						

TABLEAU XII

" Coordonnées réduites et facteurs d'agitation thermique.

Après une série de cycles d'affinement, le facteur de reliabilité a été abaissé jusqu'à la valeur R = 0.057; cette valeur extrêmement faible confirme pour les atomes les coordonnées réduites et les facteurs d'agitation thermique isotrope donnés au Tableau XII. Les facteurs de structure observés et calculés sont rassemblés au Tableau XIII.

La Figure 4 décrit les trois sortes d'environnement que constituent les atomes de fluor autour des cations dans le réseau de Sr_2CuF_6 : le strontium est entouré de huit fluors, qui constituent un cube légèrement déformé, le cuivre est au centre d'un

FIG. 4. Environnements fluorés des cations dans Sr₂CuF₆.

carré ou d'un tétraèdre déformé. Sur cette figure sont également reportées les distances interatomiques et les angles de liaison.

V. Conclusions

Les structures cristallines des phases $SrCrF_4$ et Sr_2CuF_6 ont été déterminées, leur symétrie est quadratique; $SrCrF_4$ possède le groupe spatial $I\overline{4}c2$, Sr_2CuF_6 le groupe $P\overline{4}b2$. Les phases $CaCrF_4$, $CaCuF_4$, et $SrCuF_4$ ont même structure que $SrCrF_4$.

La figure 5 permet de comparer les mailles

TABLEAU XIII

Sr₂CuF₆

_									
	hkl	Fo	F _c	hk l	Fo	F _c	hk l	Fo	F _c
	002	2.5	2.7	133	118.5	120.6	0015	1.4	1.5
	004	6.8	6.3	119	85.5	81.3	15 3	85.8	87.6
	111	6.0	3.1	0010	19.3	16.7	339	58.2	55.1
	113	112.7	116.2	22 6	64.6	68.0	1115	59.2	58.1
	020	45.6	51.5	04 0	57.6	53.0	44 0	47.8	45.9
	006	23.1	24.3	04 2	25.3	24.5	0412	48.5	53.1
	115	9.7	10.1	0012	47.1	49.6	25 6	5.8	6.4
	120	13.4	13.9	333	87.0	73.6	35 3	77.8	75.5
	121	10.9	16.1	13 9	102.6	103.1	2215	1.5	1.4
	024	26.0	31.4	24 0	70.3	67.3	159	71.4	72.4
	117	28.0	29.8	04 6	72.4	70.8	44 6	41.4	44.6
	220	74.4	81.7	0212	57.2	51.7	06 3	0.2	0.2
	026	118.3	121.9	24 4	36.4	33.2	1315	67.8	64.7
	222	24.2	20.2	24 6	98.6	95.1	2412	67.6	66,9
	131	32.3	34.1	2212	64.9	70.3			

FIG. 5. Réseau cationique des phases SrF_2 , $SrCrF_4$ et Sr_2CuF_6 .

élémentaires de ces phases avec celle de SrF_2 de type fluorine: elles s'en déduisent par un doublement et un triplement de l'un des paramètres. Les cations occupent des positions identiques, mais l'ordre qui s'établit dans les réseaux de $SrCrF_4$ et Sr_2CuF_6 entraîne un déplacement des anions au sein du réseau, déplacement qui modifie les environnements cationiques, tout spécialement ceux du chrome et du cuivre. C'est là vraisemblablement une conséquence de l'effet Jahn-Teller, qui caractérise à basse température le chrome +II et le cuivre +II (16).

Bibliographie

- 1. D. DUMORA ET J. RAVEZ, C. R. Acad. Sci., Paris 268, 337 (1969).
- 2. J. C. COUSSEINS ET M. SAMOUEL, C. R. Acad. Sci. Paris 265, 1121 (1967).
- 3. R. DE PAPE ET J. RAVEZ, Bull. Soc. Chim. France, 10, 3283 (1966).
- 4. J. C. COUSSEINS ET M. SAMOUEL, C. R. Acad. Sci. Paris 266, 915 (1968).
- 5. H. G. SCHNERING, Z. Anorg. Allg. Chem. 353, 1 (1967).
- 6. D. DUMORA ET J. RAVEZ, Bull. Soc. Chim. France, en cours de parution.
- 7. M. SAMOUEL ET A. DE KOZAK, C. R. Acad. Sci. Paris 268, 1789 (1969).
- 8. H. G. SCHNERING ET P. BLECKMANN, Naturwiss. 52, 538 (1965).
- 9. H. G. SCHNERING ET P. BLECKMANN, Naturwiss. 55, 342 (1968).
- 10. J. RAVEZ, J. VIOLLET, R. DE PAPE, ET P. HAGENMULLER, Bull. Soc. Chim. France, 4, 1325 (1967).
- 11. R. VON DER MÜHLL, J. GALY, ET S. ANDERSSON, C. R. Acad. Sci. 267, 569 (1968).
- 12. H. G. SCHNERING, Z. Anorg. Allg. Chem. 353, 13 (1967).
- 13. G. PEREZ ET M. SAUX, Bull. Soc. Chim. France, en cours de parution.
- 14. S. SIEGEL, Acta Crystallogr. 9, 493 (1956).
- 15. W. G. SLY ET R. E. MARSH, Acta Crystallogr. 10, 378 (1957).
- 16. La Société Nationale des Pétroles d'Aquitaine nous a apporté son aide matérielle.